Detection of Prion Diseases at Early Stages using Genetic Algorithm
DOI:
https://doi.org/10.32628/IJSRSET2512529Keywords:
Genetic Algorithm, Machine learning, neurodegenerative diseases, Prion diseases, DiagnosisAbstract
Neurodegenerative disorders are characterized by the progressive deterioration of neuronal function within the brain and spinal cord, leading to cognitive and motor impairments. Among these, prion diseases—caused by the misfolding of prion proteins (PrPSc)—are particularly aggressive and frequently lack early-stage diagnostic biomarkers. Early identification is essential but remains challenging due to the invasive nature of conventional diagnostic procedures. Recent advancements in machine learning, particularly genetic algorithms, offer promising methodologies for analyzing complex biomedical datasets. These approaches have the potential to facilitate timely and accurate diagnosis, thereby improving clinical outcomes.
📊 Article Downloads
References
Aromolaran, O., D. Aromolaran, I. Isewon, and J. Oyelade. "Machine learning approach to gene essentiality prediction: a review." Briefings in Bioinformatics 22, no. 5 (2021): bbab128. doi: 10.1093/bib/bbab128. DOI: https://doi.org/10.1093/bib/bbab128
Bankevich, A., S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, et al. "SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing." Journal of Computational Biology 19, no. 5 (2012): 455–477. doi: 10.1089/cmb.2012.0021. DOI: https://doi.org/10.1089/cmb.2012.0021
Batlle, C., V. Iglesias, S. Navarro, and S. Ventura. "Prion-like proteins and their computational identification in proteomes." Expert Review of Proteomics 14, no. 4 (2017): 335–350. doi: 10.1080/14789450.2017.1304214. DOI: https://doi.org/10.1080/14789450.2017.1304214
Ben Othman, M.T., and G. Abdel-Azim. "Genetic algorithms with permutation coding for multiple sequence alignment." Recent Patents on DNA & Gene Sequences 7, no. 2 (2013): 105–114. doi: 10.2174/1872215611307020004. DOI: https://doi.org/10.2174/1872215611307020004
Boulesteix, A.L., M.N. Wright, S. Hoffmann, and I.R. König. "Statistical learning approaches in the genetic epidemiology of complex diseases." Human Genetics 139, no. 1 (2020): 73–84. doi: 10.1007/s00439-019-01996-9. DOI: https://doi.org/10.1007/s00439-019-01996-9
Ching, T., D.S. Himmelstein, B.K. Beaulieu-Jones, A.A. Kalinin, B.T. Do, G.P. Way, et al. "Opportunities and obstacles for deep learning in biology and medicine." Journal of the Royal Society Interface 15, no. 141 (2018): 20170387. doi: 10.1098/rsif.2017.0387. DOI: https://doi.org/10.1098/rsif.2017.0387
Dickson, D.W. "Launch of American Journal of Neurodegenerative Disease." American Journal of Neurodegenerative Disease 1 (2012).
Heo, J., J.G. Yoon, H. Park, Y.D. Kim, H.S. Nam, and J.H. Heo. "Machine learning-based model for prediction of outcomes in acute stroke." Stroke 50, no. 5 (2019): 1263–1265. doi: 10.1161/STROKEAHA.118.024293. DOI: https://doi.org/10.1161/STROKEAHA.118.024293
Jan, Z., and S. Schwarzinger. "Genetic algorithms as a tool for helix design—computational and experimental studies on prion protein helix 1." Journal of Computer-Aided Molecular Design 20, no. 1 (2006): 47–54. doi: 10.1007/S10822-006-9035-5. DOI: https://doi.org/10.1007/s10822-006-9035-5
Johnson, K.W., J. Torres Soto, B.S. Glicksberg, K. Shameer, R. Miotto, M. Ali, et al. "Artificial intelligence in cardiology." Journal of the American College of Cardiology 71, no. 23 (2018): 2668–2679. doi: 10.1016/j.jacc.2018.03.521. DOI: https://doi.org/10.1016/j.jacc.2018.03.521
Jullius Kumar, D.L., L. Gupta, and U. Singh. "Fault-tolerant algorithm for software prediction using machine learning techniques." International Journal of Software Science and Computational Intelligence 14, no. 1 (2022): 1–18. doi: 10.4018/ijssci.309425. DOI: https://doi.org/10.4018/IJSSCI.309425
Kim, T.K., I. Lee, J.H. Cho, B. Canine, A. Keller, N.D. Price, D. Hwang, G. Carlson, and L. Hood. "Core transcriptional regulatory circuits in prion diseases." Molecular Brain 13, no. 1 (2020): 10. doi: 10.1186/s13041-020-0551-3. DOI: https://doi.org/10.1186/s13041-020-0551-3
Luo, L., C. Zheng, J. Wang, M. Tan, Y. Li, and R. Xu. "Analysis of disease organ as a novel phenotype towards disease genetics understanding." Journal of Biomedical Informatics 95 (2019): 103235. doi: 10.1016/j.jbi.2019.103235. DOI: https://doi.org/10.1016/j.jbi.2019.103235
Manduchi, E., J.D. Romano, and J.H. Moore. "The promise of automated machine learning for the genetic analysis of complex traits." Human Genetics 141, no. 9 (2022): 1529–1544. doi: 10.1007/s00439-021-02393-x. DOI: https://doi.org/10.1007/s00439-021-02393-x
McLay, L.A., and D.E. Goldberg. "Efficient genetic algorithms using discretization scheduling." Evolutionary Computation 13, no. 3 (2005): 353–385. doi: 10.1162/1063656054794752. DOI: https://doi.org/10.1162/1063656054794752
Pearce, J.M. "Disease, diagnosis or syndrome?" Practical Neurology 11, no. 2 (2011): 91–97. doi: 10.1136/jnnp.2011.241802. DOI: https://doi.org/10.1136/jnnp.2011.241802
Silva, G.F.S., T.P. Fagundes, B.C. Teixeira, and A.D.P. Chiavegatto Filho. "Machine learning for hypertension prediction: a systematic review." Current Hypertension Reports 24, no. 11 (2022): 523–533. doi: 10.1007/s11906-022-01212-6. DOI: https://doi.org/10.1007/s11906-022-01212-6
Sparrow, R. "In vitro eugenics." Journal of Medical Ethics 40, no. 11 (2014): 725–731. doi: 10.1136/medethics-2012-101200. DOI: https://doi.org/10.1136/medethics-2012-101200
Uddin, S., A. Khan, M.E. Hossain, and M.A. Moni. "Comparing different supervised machine learning algorithms for disease prediction." BMC Medical Informatics and Decision Making 19, no. 1 (2019): 281. doi: 10.1186/s12911-019-1004-8. DOI: https://doi.org/10.1186/s12911-019-1004-8
Yasmeen, U., M.A. Khan, U. Tariq, J.A. Khan, M.A. Yar, A. Hanif, M. Senghour, and Y. Nam. "Citrus diseases recognition using deep improved genetic algorithm." CMC-Computers, Materials & Continua (2022). doi: 10.32604/cmc.2022.022264. DOI: https://doi.org/10.32604/cmc.2022.022264
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.