Investigation of the Effect of Titanium Doping on the Physical Properties of SnS Thin Films Prepared via Chemical Spray Pyrolysis
DOI:
https://doi.org/10.32628/IJSRSET2512528Keywords:
SnS thin films, titanium doping, chemical spray pyrolysis, structural properties, optical band gap, surface morphologyAbstract
This study systematically examined the effects of titanium (Ti) doping on the structural, morphological, and optical properties of SnS thin films prepared via chemical spray pyrolysis (CSP). X-ray diffraction (XRD) analysis confirmed that all films retained a polycrystalline orthorhombic structure, with the (021) plane remaining dominant regardless of Ti concentration (0, 2 and 4 at.%). Ti incorporation led to an increase in crystallite size from 16.22 nm for pure SnS to 23.61 nm at 4% Ti. Additionally, dislocation density decreased with doping, indicating fewer defects and potential improvements in charge carrier mobility. Atomic force microscopy (AFM) revealed that increasing Ti content reduced surface roughness from 7.75 nm to 4.21 nm and decreased particle size from 44.42 nm to 31.00 nm. Optically, Ti doping caused a slight narrowing of the bandgap from 1.65 eV to 1.55 eV. Transmittance decreased from 94% to 87%., while the extinction coefficient and refractive index also declined.
📊 Article Downloads
References
R. Ellingson, M. Heben, “Absorption coefficients of semiconductor thin films,” (November, 2011).
M. Reghima, A. Akkari, C. Guasch, N. Kamoun-Turki, “Effect of indium dopingon physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition,” J. Renew. Sust. Energy 4, 011602-1-011602-12 (2012). DOI: https://doi.org/10.1063/1.3676073
B.J. Lokhande, P.S. Patil, M.D. Uplane, “Studies on structural, optical and elec-trical properties of boron doped zinc oxide films prepared by spray pyrolysis technique,” Phys. B 302/303, 59-63(2001). DOI: https://doi.org/10.1016/S0921-4526(01)00405-7
N. Koteeswara Reddy, K.T. Ramakrishna Reddy, Mater. Chem. Phys. 102, 13-18(2007).
P. Sinsermsuksakul, K. Hartman, S. B. Kim, J. Heo, L. Sun, H. H. Park, R. Chakraborty, T. Buonassisi and R. G. Gordon, Appl. Phys. Lett.,102, 053901(2013). DOI: https://doi.org/10.1063/1.4789855
C. Letters, E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus, “Properties of P-Type SnS Thin Films Prepare by Chimica Bath Deposition,” Chalcogenide Lett. 7, 685-694(2011).
Ehm L, Knorr K, Dera P, Krimmel A, Bouvier P, and Mezouar M, Journal of Physics: Condensed Matter, 92:161(2004).
Kannusamy JH, Mohanraj, Kannan S, Barathan S, Sivakumar G, The European Physical Journal, Applied Physics, 61:10301(2013). DOI: https://doi.org/10.1051/epjap/2012120359
Sheinia F, Cheraghizade M, Yousefi R, Solid State Sciences,79: 30-37(2018). DOI: https://doi.org/10.1016/j.solidstatesciences.2018.03.005
Po-Chia Huang, Muhammad Omar Shaikh, Sheng-Chang Wang, “Structural and optoelectronic properties of alloyed SnxMn1-xS thin films,” Advanced Powder TechnologyVol.27, Issue3, P. 964-970(2016). DOI: https://doi.org/10.1016/j.apt.2016.03.008
B. Ghosh, R. Bhattacharjee, P. Banerjee, and S. Das, Appl. Surf. Sci. 257, 3670-3676 (2011). DOI: https://doi.org/10.1016/j.apsusc.2010.11.103
N. K. Reddy and K. T. R. Reddy, Mater. Chem. Phys. 102, 13-18 (2007). DOI: https://doi.org/10.1016/j.matchemphys.2006.10.009
P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, “Atomic layer de-position of tin monosulfide thin films,” Adv. Energy Mater. 1,1116-1125(2011). DOI: https://doi.org/10.1002/aenm.201100330
H. Zhang, Y. Balaji, N. Mehta, M. Heyns, M. Caymax, I. Radu, A. Delabie, “Formation mechanism of 2D SnS2 and SnS by chemical vapor deposition using SnCl4 and H2S,” 6172-6178(2018). DOI: https://doi.org/10.1039/C8TC01821A
K. Hartman, J. L. Johnson, M. I. Bertoni, D. Recht, M. J. Aziz, M. A. Scarpulla, and T. Buonassisi, Thin Solid Films 519, 7421-7424 (2011). DOI: https://doi.org/10.1016/j.tsf.2010.12.186
W.Wang, K.K. Leung, W.K. Fong, S.F.Wang, Y.Y. Hui, S.P. Lau, Z. Chen, L.J. Shi, C. B. Cao, C. Surya, Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer, J. Appl. Phys. 111, 93520(2012) DOI: https://doi.org/10.1063/1.4709732
A. Abdolohzadeh Ziabari, F. E. Ghodsi and G. Kiriakidis, Surf. Coat. Tech., 213, 15(2015). DOI: https://doi.org/10.1016/j.surfcoat.2012.10.003
S. Vijayalakshmi, S. Venkataraj, R. Jayavel, J. Phys.D. Appl. Phys 41, 245403 (2008). DOI: https://doi.org/10.1088/0022-3727/41/24/245403
Williamson, G. B.; Smallman, R. C. Philos. Mag. 1, 34(1956). DOI: https://doi.org/10.1080/14786435608238074
K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, “Effect of Sb dopant on the structural, optical and electrical properties of SnS thin films by spray pyrolysis technique,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 115, 840-844(2013). DOI: https://doi.org/10.1016/j.saa.2013.06.112
G. Willeke, R. Dasbach, B. Sailer and E. Bucher, “Thin pyrite (FeS2) films prepared by magnetron sputtering,” Thin Solid Films 213:271-276(1992). DOI: https://doi.org/10.1016/0040-6090(92)90293-K
P. Sinsermsuksakul, R. Chakraborty, S. B. Kim, S.M. Heald, T. Buonassisi, and R. G. Gordon, R.G., “Antimony-doped tin(II) sulfide thin films,” Chem. Mater. 24, 4556-4562(2012). DOI: https://doi.org/10.1021/cm3024988
A. Chowdhury, B. Biswas, M. Majumder, M. K. Sanyal and B. Mallik, “Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures. Thin Solid Films 520:6695-6704(2012). DOI: https://doi.org/10.1016/j.tsf.2012.07.013
A. Javed, Q. Ain and M. Bashir, “Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films,” J. Alloy. Compd. 759, 14-21(2018). DOI: https://doi.org/10.1016/j.jallcom.2018.05.158
Xu. Linhua, Li. Xiangyin. J. Cryst. Growth. 312:851-5(2010). DOI: https://doi.org/10.1016/j.jcrysgro.2009.12.062
N. Eman, S. Igbal, M. Alias, “Characterization of cadmium tin oxide thin films as a window layer for solar cell,”Int. J.Appl. Innov. Eng. Man., 2,189-194 (2013).
A. Mulama, J. Mwabora, Optical properties and raman studies of amorphous Se-Bi thin films. African Rev. of Phys., 9, 32-38, (2014).
T. Mohammad, “Optical properties of cadmium stannate thin film prepared by pyrolytic process,” Solid State, 72, 1043-1046 (1989). DOI: https://doi.org/10.1016/0038-1098(89)90624-8
S. M. Sze and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, (2006). DOI: https://doi.org/10.1002/0470068329
J. Vidal, S. Lany, M. dAvezac, A. Zunger, A. Zakutayev, J. Francis and J. Tate, Appl. Phys. Lett.,100, 032104(2012). DOI: https://doi.org/10.1063/1.3675880
H.Wiedemeier, F.J. Csillag, Zeitschrift fur Kristallographie 149, 17(1979). DOI: https://doi.org/10.1524/zkri.1979.149.14.17
H.H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, R.G. Gordon, “Co-optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells,” Prog. Photovoltaics Res. Appl. 23, 901-908(2015). DOI: https://doi.org/10.1002/pip.2504
B.K. Pandey and Ram Gopal, “Synthesis and Mn doped Band gap Engineering in SnS Nanoparticles,” Materials Letters, 272, 127840-127852(2020). DOI: https://doi.org/10.1016/j.matlet.2020.127842
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.